
Optimized String Search with MMX™ Technology

Information in this document is provided in connection with Intel products. No license, express or
implied, by estoppel or otherwise, to any intellectual property rights is granted by this document.
Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no
liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of
Intel products including liability or warranties relating to fitness for a particular purpose,
merchantability, or infringement of any patent, copyright or other intellectual property right. Intel
products are not intended for use in medical, life saving, or life sustaining applications. Intel may
make changes to specifications and product descriptions at any time, without notice.

Copyright (c) Intel Corporation 1997.

*Third-party brands and names are the property of their respective owners.

CONTENTS:
1.0. INTRODUCTION
2.0. OVERVIEW

2.1. MMX™ Technology Version
2.1.1 Initialization
2.1.2 Compare Two Characters

2.2. Case-Insensitive Version
3.0. PERFORMANCE GAINS
4.0. CODE LISTING

4.1. Case-Sensitive
4.1.1. STRSTRMMX
4.1.2. STRSTR

4.2 Case-Insensitive
4.2.1. STRISTRMMX
4.2.2. STRISTR

1.0. INTRODUCTION
Text string searches work by linearly checking every character of the text with the first character of the search string,
and then checking for the second letter when the first is found, and so on. Traditionally, this is done one character at
a time. However, with the MMX™ technology extensions to the Intel Architecture, specifically the PCMPEQB
instruction, 8 characters can be compared at once. This application note demonstrates two Single-Instruction,
Multiple-Data (SIMD) approaches. The first function has two improvements over the traditional method: it compares
eight characters at a time, and it also checks the second character of the search string against eight characters of
text. The second function shows a case-insensitive version which uses MMX™ instructions to efficiently check the

1 of 13 1/7/98 4:00 PM

Optimized String Search with MMX™ Technology http://proto-cps.jf.intel.com/drg/pentiumII/appnotes/string.htm

case of eight characters and convert them to lower case if they are capital letters.

2.0. OVERVIEW
Scalar string searches work on a fairly simple algorithm:

1. Read in the first character of the search string.
2. Read in the next character of the text, and compare text character with search string character.
3. If the characters are different, go to Step 2, unless the remaining text is not as long as the search string. If so,

then go to Step 6.
4. Read in the next string character and the next text character, and compare.
5. If the characters are the same, go to Step 4, unless it is the end of the search string.
6. Return the address of the start of the search string in the text, or NULL if not found.

This is implemented in the standard C library function strtstr(), which was used for comparision purposes, and will
not be explored in further detail.

2.1. MMX™ Technology Version

This function uses MMX™ instructions to check for the first two letters of the search string in eight characters from
the text. It has the following basic form:

1. Initialization: loading pointers to the search string (SearchStr) and the text (TxtBuff), propagate the first two
characters of the search string (SearchStr[0] and SearchStr[1]) to each fill an MMX™ register, load the first 8
bytes of text, and align the text so that future reads are 8-byte aligned. There is also an early-out test to see
whether the text buffer is longer that the search string. If not, it skips to Step 7.

2. Compare the current 8 bytes of text with SearchStr[0] and SearchStr[1], shift the result of SearchStr[0] so that
it lines up with the result of SearchStr[1] and compare the two together (see Figure 3, Section 2.2.2). Save
the last byte of the SearchStr[0] compare for the next time through the loop. Pack the final result of the
compares into 32 bits and save into EAX.

3. This part of the code checks to see if the previous step matched two characters. It does not use MMX™
instructions because it has to check each character individually, and MMX™ instructions are not well-suited
to data-dependant operations. First, there is an early-out test to check all 8 characters (each of which is now
stored in 4 bits because of the packing instruction) to see if a character-by-character examination is
necessary. If there are no positive results, it skips to Step 6. Otherwise, EAX is examined 4 bits at a time. If
the low 4 bits are zero, then EAX is shifted to the next 4 bits and the appropriate text pointers are
incremented until a positive result is found.

4. This step compares the remaining characters in the search string to the current position in the text buffer one
character at a time, using scalar instructions. Insuring aligned access and checking for the end of the search
string adds too much overhead for this to be efficiently accomplished using MMX™ instructions. First, the
next search character is read in and compared against itself to check for the end of the search string. If it is
not null, then the text character is loaded and the two are compared, until a compare fails and it jumps back
to Step 3 to look for additional hits in the current 8 bytes, or it reaches the end of the search string and
continues to Step 5.

5. EAX is loaded with the address of the start of the search string in the text buffer, and this value is returned.
6. (From Step 3) The character-by-character comparison failed: the first two characters matched but the search

string was not found. The text pointer is incremented to the next 8 bytes and those characters are loaded,
and the text buffer size is decreased by 8 and if that was not the end of the buffer, execution jumps to Step 2.

7. The search string was not found. The function returns NULL.

Due to the nature of the algorithm, this function will not find one-character search strings, because it will never
match the first two characters. There is a special check at the beginning of the function to see if the search string is
one character, in which case it is thrown to the regular string search.

Some of the more complex and/or MMX™ instruction intensive sections are explained in greater detail in the
following sections.

2 of 13 1/7/98 4:00 PM

Optimized String Search with MMX™ Technology http://proto-cps.jf.intel.com/drg/pentiumII/appnotes/string.htm

2.1.1. Initialization

This diagram demonstrates how the PUNPCKL and PUNPKH instructions are used to propogate the first two
characters of the search string to each fill a 64-bit register.

Figure 1. Unpacking the first two characters of SearchStr

The first instruction, PUNPCKLBW, replicates the low bytes throughout the register. Then PUNPCKLWD unpacks
the low words into doublewords, and PUNPCKLDQ and PUNPCKHDQ unpacks the low and high doublewords into
quadwords for SearchStr[0] and SearchStr[1], respectively.

It is important that the function performs its own memory alignment, because even if the text buffer is originally
8-byte aligned, if the user performs further searches starting where the last one left off, it is unlikely that the start will
be on an 8-byte boundary. To handle this, the first text read is performed regardless of alignment, and then the data
is shifted so that the next text read will be aligned, although it will re-read some overlapping characters. The search
string is not read often enough to make it worth aligning, and as a smaller variable is likely to be aligned anyway.

2.1.2. Compare Two Characters

This is the outermost loop. First, it checks SearchStr[0] and SearchStr[1] against eight characters of text. The figure
illustrates searching for 'the' in the text fragment 'that the'. Remember that the lowest byte of the MMX™ register is
displayed to the right and the highest byte to the left. This is why the text fragment appears backward.

3 of 13 1/7/98 4:00 PM

Optimized String Search with MMX™ Technology http://proto-cps.jf.intel.com/drg/pentiumII/appnotes/string.htm

Figure 2. Initial Comparisons

The results from Figure 2 cannot immediately be used. If the text contains SearchStr[0], we want to see whether it
also contains SearchStr[1] in the next character. This means that one of the results must be shifted one byte to line
up with the other result. If the SearchStr[1] result was shifted to the right, then the high byte would need to contain
the comparison result for the character after the last byte in SearchStr[0] , which will not be obtained until the next
time through the loop. Shifting the SearchStr[1] result to the left requires the last byte from the previous SearchStr[1]
result, which is much easier to obtain.

Figure 3. Final Comparisons

Figure 3 shows the shifts involved in preparing SearchStr[1] for comparison with SearchStr[0]. The SearchStr[1]

4 of 13 1/7/98 4:00 PM

Optimized String Search with MMX™ Technology http://proto-cps.jf.intel.com/drg/pentiumII/appnotes/string.htm

comparison result from this loop is shifted one byte to the left, and is ORed with a copy of SearchStr[1] from the last
loop that has been shifted to the right by 7 bytes. The POR instruction logically ORs all 64 bits. No masks are
needed, because the left shift leaves the low byte zero, and the right shift leaves the high 7 bytes zero. Now, the
SearchStr[0] and SearchStr[1] results can be compared and packed with saturation from words to bytes so that the
entire MMX™ register can be represented with 32 bits.

Figure 4. Packing signed words to bytes

Figure 3 illustrates the four possible cases of the PACKSSWB instruction and their results. Clearly, the value of the
original byte can be found by checking every fourth bit. The remaining steps are faily simple and have been
adequately described above.

2.2. Case-Insensitive Version

The case-insensitive version requires that both the SearchStr and the TextBuf are converted to the same case
before the characters are compared. Because the search string is small and will be used many times, an aligned
copy is created. This is the only change in the initialization section. During the outer loop, the same technique is
used to convert the current 8 characters of text to lower case before being compared to SearchStr[0] and
SearchStr[1].

The only difference within the inner, scalar loop occurs before it checks the text character-by-character. It can read
directly from the copy of SearchStr, but because the text is still mixed-case, it has to be converted before it can be
used. To do this, eight characters of text are read, converted, and stored into a temporary buffer, and the inner loop
reads from there. When all eight characters have been verified, another eight are read in and converted.

Figure 5. Sample ASCII Text and its numeric equivalent (in hex).

The sample text "The Pres" is compared against the upper and lower bounds for uppercase ASCII letters.

5 of 13 1/7/98 4:00 PM

Optimized String Search with MMX™ Technology http://proto-cps.jf.intel.com/drg/pentiumII/appnotes/string.htm

Figure 6. Comparing text against the upper and lower bounds for ASCII uppercase letters.

If a character is greater than the lower bound of 40h, and is lower than the upper bound of 5Bh (the actual compare
tests whether the characters are greater than the upper bound, which is equivalent), then that byte will contain all
ones at the end of the compares.

Figure 7. Adding the offset to uppercase letters.

ANDing the result of the compares with the 20h offset between 'A' and 'a' and adding that result to the original text
converts any uppercase letters to lowercase letters. Lowercase letters and other special characters are unaffected.

6 of 13 1/7/98 4:00 PM

Optimized String Search with MMX™ Technology http://proto-cps.jf.intel.com/drg/pentiumII/appnotes/string.htm

3.0. PERFORMANCE GAINS
Performance measurements were taken on a 150MHz Pentium® Processor with MMX™ technology and a 233MHz
Pentium® II Processor. Relative performance did not vary across processors; that is, the ratio of scalar to MMX
technology was the same on both the Pentium and Pentium II processor.

The MMX™ technology enhanced string-find works 50% faster than the pure scalar string-find. Even though the
MMX™ technology version works eight characters at a time, it is not eight times faster because of the additional
overhead of the more complex algorithm. Also, because of this overhead, on very short searches (less than 50
characters) it may be slower than the scalar string-find. During longer searches, more time is spent in the outer
loop, which is that part that MMX™ technology accelerated most.

The MMX™ technology case-insensitive string-find is 4.5X faster than the C-version. The perfomance improvement
here is much greater than the case-sensitive version because MMX™ instructions can convert the case of eight
characters at once, without branches.

4.0. CODE LISTINGS
The MMX™ functions are inline assembly with C wrappers, compiled with Microsoft Visual C++*, version 5.0.

4.1. Case-Sensitive

4.1.1. STRSTRMMX

__int64 mask=0x07;

char *strstrmmx(const char *TxtBuff, const char *SearchStr)
{
if (SearchStr[1] == '\0') //Will not work with 1 character search strings
 strstr(TxtBuff, SearchStr);
__asm{
//mix2_strfind PROC C USES edi esi ebx ecx,
// TxtBuff:PTR BYTE, TxtBuff_Size:DWORD, SearchStr:PTR BYTE, SearchStr_Size:DWORD, No_Case:DWORD

//Initialization
 mov edi,SearchStr ;save addr of searchstr
 mov esi,TxtBuff ;save addr of txtbuffer

 xor ecx,ecx ;zero ecx to indicate continue

 movq mm0,dword ptr[edi] ;load the first 8 char from searchstr

 movd mm7,esi ;alignment code
 punpcklbw mm0,mm0 start the propagation of searchstr[0]

 punpcklwd mm0,mm0
 pand mm7,mask ;find offset of TxtBuff from 8 byte

 lea edx,[edi+2] ;save searchstr[2] address
 movq mm1, mm0 ;copy of SearchStr

 movq mm4,dword ptr[esi] ;copy the next 8 byts of text buffer into mm4
 punpckldq mm0,mm0 finish propagating searchstr[0] into whole mmx reg

 punpckhdq mm1,mm1 finish propagating searchstr[1] into whole mmx reg
 movq mm2,mm0 ;save propagate searchstr[0] to mm2 for later recovery

 psllq mm7,3
 pxor mm5,mm5

 movq mm3,mm1 ;save propagate searchstr[1] to mm3 for later recovery
 psllq mm4,mm7 ;shift first 8 bytes by offset

7 of 13 1/7/98 4:00 PM

Optimized String Search with MMX™ Technology http://proto-cps.jf.intel.com/drg/pentiumII/appnotes/string.htm

 and esi,0FFFFFFF8h ;align TxtBuff pointer
 ;end alignment code

MATCH_2_CHARS:

 pcmpeqb mm0,mm4 ;compare 8 bytes of searchstr[0] to txtbuffer
 pcmpeqb mm1,mm4 ;compare 8 bytes of searchstr[1] to txtbuffer

 movq mm6,mm0 ;copy of results of searchstr[0] compare
 psllq mm0,8 ;shift left 1 byte to line up with searchstr[1]

 por mm0,mm5 ;combine the current searchstr[0] with the last byte of the previous compare
 psrlq mm6,56 ;save the last byte of searchstr[0]

 pand mm0,mm1 ;compare searchstr[0] and searchstr[1]
 lea edi,[esi+1] ;copy textbuffer just in case we will do byte by byte compare

 packsswb mm0,mm0 ;reduce to 32bits
 push ecx ;ecx indicates stop (1) or continue (0)

 ;1 penalty cycle on PPMT

 movd eax,mm0 ;copy ldword of quad compare into eax
 movq mm5,mm6 ;save last byte of searchstr[0] for next iteration

 test eax,eax ;set flags
 jz NO_MATCH_FOUND

FIND_MATCHES:
 test al,1000b ;does this byte have info if not then advance 4 bits for next byte
 jz NEXT_BYTE ;no match found for this byte

;scalar asm*****************************/
 mov ecx,edi ;copy address of text buffer to ecx
 push edx ;save searchstr[2] address cuz we are clobbering it

mainlupe:
 mov bl,[edx] ;copy searchstr[i] to bl
 inc edx

 or bl,bl ; if we've reached the end of search str, we've
 jz short success ; found the first matching substring

 mov bh,[ecx] ;copy textbuffer[i] to bh
 inc ecx

 cmp bl,bh ; characters match?
 je short mainlupe

 ; failed comparison. recover pointer to searchstr+1
 ; and work on next byte

 pop edx
 jmp NEXT_BYTE

success:
 lea eax,[edi-2] ;since edi contains textbuffer+2 we must give proper address in buffer
 pop ecx

 pop ecx
 jmp DONE

;************************************/

NEXT_BYTE:
 shr eax,4 ;shift right 4 bits
 inc edi ;inc textbuffer offset

 cmp eax,08h ;do we have any more info to process
 jae FIND_MATCHES

NO_MATCH_FOUND: ;no match for the quad words
 add esi,8 ;advance the text buffer by 8
 pop ecx ;load remaining size of buffer

8 of 13 1/7/98 4:00 PM

Optimized String Search with MMX™ Technology http://proto-cps.jf.intel.com/drg/pentiumII/appnotes/string.htm

 test ecx,ecx ;have we reached the end of the text buffer?
 jnz DONE_NOT_FOUND ;if ecx is not zero, quit

 movq mm4,dword ptr[esi] ;copy the next 8 byts of text buffer into mm4
 psubb mm0,mm0 ;zero out mm0

 movq mm1,mm4 ;copy text

 pcmpeqb mm1,mm0 ;compare text with zero

 packsswb mm1,mm1 ;pack to 32bits
 movq mm0,mm2 ;copy SearchStr[0]

 movd ecx,mm1 ;store in ecx
 movq mm1,mm3 ;copy SearchStr[1]

 jmp MATCH_2_CHARS

DONE_NOT_FOUND:
 xor eax,eax ;no match found

DONE:
 emms
 }
} //eax is returned

4.1.2. STRSTR

This is the strstr(char *text, char *string) function that is part of the standard C library included with Microsoft Visual
C++, version 5.0, defined in <string.h>. Source code is not available.

4.2. Case-Insensitive

4.2.1. STRISTRMMX

__int64 mask=0x07,
 difference= 0x2020202020202020,
 low_bound= 0x4040404040404040,
 up_bound= 0x5B5B5B5B5B5B5B5B;
int EndUncapBuf;

char *stristrmmx(char *TxtBuff,char const *SearchStr)
{
if (SearchStr[1] == '\0') //Will not work with 1 character search strings
 stristr(TxtBuff, SearchStr);
__asm{
//mix2_strfind PROC C USES edi esi ebx ecx,
// TxtBuff:PTR BYTE, TxtBuff_Size:DWORD, SearchStr:PTR BYTE, SearchStr_Size:DWORD, No_Case:DWORD

//PREP:
 mov edi,SearchStr ;save addr of searchstr
 psubb mm1,mm1 ;zero mm1

 mov esi,TxtBuff ;save addr of txtbuffer
 xor ecx,ecx ;ecx initialized to continue (0)

;capitalize the SearchStr
 xor eax, eax ;load with continue (0)
 mov ebx, dword ptr Search ;load pointer to copy of lowercase SearchStr
CAP_SEARCH:
 test eax,eax
 jnz END_CAP_SEARCH ;if a null was found, end of string

 movq mm6,[edi] ;search string

 movq mm5,[up_bound]
 movq mm4,mm6 ;copy search string

 pcmpgtb mm4,[low_bound] ;char>low_bound
 movq mm0,mm6 ;copy search string

9 of 13 1/7/98 4:00 PM

Optimized String Search with MMX™ Technology http://proto-cps.jf.intel.com/drg/pentiumII/appnotes/string.htm

 pcmpgtb mm5,mm6 ;up_bound>char?

 pand mm5,[difference]
 pand mm5,mm4

 add edi,8 ;increment Search pointer
 pcmpeqb mm0,mm1 ;compare search with null

 paddb mm6,mm5
 packsswb mm0,mm0 ;pack null compare to 32bits

 movq [ebx],mm6 ;save to Search
 add ebx,8

 movd eax,mm0 ;store compacted null compare

 jmp CAP_SEARCH ;repeat if above 0

END_CAP_SEARCH:
 mov edi,dword ptr Search ;reload SearchStr

 movq mm0,dword ptr[edi] ;load the first 8 char from searchstr

 punpcklbw mm0,mm0 ;start the propagation of searchstr[0]

 punpcklwd mm0,mm0

 movq mm1, mm0
 punpckldq mm0,mm0 ;finish propagating searchstr[0] into whole mmx reg

 lea edx,[edi+2] ;save searchstr[2] address
 punpckhdq mm1,mm1 ;finish propagating searchstr[1] into whole mmx reg

 movq mm4,dword ptr[esi] ;copy the next 8 byts of text buffer into mm4
 movq mm2,mm0 ;save propagate searchstr[0] to mm2 for later recovery

 pxor mm5,mm5
 movq mm3,mm1 ;save propagate searchstr[1] to mm3 for later recovery

;alignment code
 movd mm7,esi
 pand mm7,mask ;find offset of TxtBuff from 8 byte
 psllq mm7,3 ;multiply number of bytes by 8 to get number of bits to shift
 psllq mm4,mm7 ;shift first 8 bytes by offset
 and esi,0FFFFFFF8h ;align TxtBuff pointer
;end alignment code

MATCH_1ST_CHAR:
;capitalize this qw
 movq mm6,[up_bound]
 movq mm7,mm4

 pcmpgtb mm7,[low_bound] ;char>low_bound
 pcmpgtb mm6,mm4 ;up_bound>char?

 pand mm6,[difference]

 pand mm6,mm7

 paddb mm4,mm6
;end cap
 pcmpeqb mm0,mm4 ;compare 8 bytes of searchstr[0] to txtbuffer
 pcmpeqb mm1,mm4 ;compare 8 bytes of searchstr[1] to txtbuffer

 movq mm6,mm0
 psllq mm0,8

 por mm0,mm5
 psrlq mm6,56

 pand mm0,mm1 ;comp with 1st byte
 lea edi,[esi+1] ;copy textbuffer just in case we will do byte by byte compare

 packsswb mm0,mm0 ;reduce to 32bits

10 of 13 1/7/98 4:00 PM

Optimized String Search with MMX™ Technology http://proto-cps.jf.intel.com/drg/pentiumII/appnotes/string.htm

 push ecx ;ecx stop (1) or continue (0)
;1 penalty cycle on PPMT

 movd eax,mm0 ;copy ldword of quad compare into eax
 movq mm5,mm6

 test eax,eax ;early out
 jz NO_MATCH_FOUND

FIND_MATCHES:
 test al,1000b ;does this byte have info if not then advance 4 bits for next byte
 jz NEXT_BYTE ;no match found for this byte

;scalar asm*****************************
 push edx ;save searchstr[1] address cuz we are clobbering it
 push edi
uncap:
 movq mm4,[edi]

 movq mm0,[up_bound]
 movq mm1,mm4

 pcmpgtb mm1,[low_bound] ;char>low_bound
 pcmpgtb mm0,mm4 ;up_bound>char?

 pand mm0,[difference]
 pand mm0,mm1

 mov ecx,[UncapBuf] ;copy address of text buffer to ecx
 paddb mm4,mm0

 movq [ecx],mm4 ;save in CapBuffer
;uncapped

mainlupe:

 mov bl,[edx] ;copy searchstr[i] to bl
 inc edx

 or bl,bl ; if we've reached the end of search str, we've
 jz short success ; found the first matching substring

 mov bh,[ecx] ;copy textbuffer[i] to bh
 inc ecx

 cmp bl,bh ; characters match?
 jne short mainlupefailed

;check to see if done with current 8 bytes
 cmp ecx,[EndUncapBuf]
 jne mainlupe

 add edi,8 ;add 8 to position in text buffer
 jmp uncap ;load next 8 chars and uncap

success:
 pop edi
 pop ecx

 lea eax,[edi-2] ;since edi contains textbuffer+2 we must give proper address in buffer
 pop ecx

 jmp DONE

;************************************
mainlupefailed:
 ; failed comparison. recover pointer to searchstr+1
 ; and work on next byte
 pop edi
 pop edx

NEXT_BYTE:
 shr eax,4 ;shift right 4 bits
 inc edi ;inc textbuffer offset

11 of 13 1/7/98 4:00 PM

Optimized String Search with MMX™ Technology http://proto-cps.jf.intel.com/drg/pentiumII/appnotes/string.htm

 cmp eax,08h ;do we have any more info to process
 jae FIND_MATCHES

NO_MATCH_FOUND: ;no match for the quad words
 add esi,8 ;advance the text buffer by 8
 pop ecx ;load stop/cont (1/0)

 test ecx,ecx
 jnz DONE_NOT_FOUND

 movq mm4,dword ptr[esi] ;copy the next 8 byts of text buffer into mm4
 psubb mm0,mm0 ;zero out mm0

 movq mm1,mm4 ;copy text

 pcmpeqb mm1,mm0 ;compare text with zero
 movq mm0,mm2 ;copy SearchStr[0]

 packsswb mm1,mm1 ;pack to 32bits

 movd ecx,mm1 ;store in ecx
 movq mm1,mm3 ;copy SearchStr[1]

 jmp MATCH_1ST_CHAR ;have we reached the end of the text buffer?

DONE_NOT_FOUND:
 xor eax,eax ;no match found

DONE:
 emms
 }
} //eax is returned

4.2.2. STRISTR

This code was obtained from the public domain collection SNIPPETS . The file Stristr.C was modified, primarily to
remove two very slow strlen() calls to get the lengths of the strings. It now checks for null terminating characters and
is roughly 5X faster than the original SNIPPETS function.

/* +++Date last modified: 4-Aug-1997 */

/*
** Designation: StriStr
**
** Call syntax: char *stristr(char *String, char *Pattern)
**
** Description: This function is an ANSI version of strstr() with
** case insensitivity.
**
** Return item: char *pointer if Pattern is found in String, else
** pointer to 0
**
** Rev History: 16/07/97 Greg Thayer Optimized (and possibly de-ANSI-fied)
** 07/04/95 Bob Stout ANSI-fy
** 02/03/94 Fred Cole Original
**
** Hereby donated to public domain.
*/

__inline char toupper(char c)
{
return ((c>(char)0x60) && (c<(char)0x7b))? c-0x20:c;
}

char *stristr(const char *String, const char *Pattern)
{
 char *pptr, *sptr, *start;

 for (start = (char *)String; *start != '\0'; start++)
 {

12 of 13 1/7/98 4:00 PM

Optimized String Search with MMX™ Technology http://proto-cps.jf.intel.com/drg/pentiumII/appnotes/string.htm

 /* find start of pattern in string */
 for (;((*start!='\0') && (toupper(*start) != toupper(*Pattern))); start++);

 pptr = (char *)Pattern;
 sptr = (char *)start;

 while (toupper(*sptr) == toupper(*pptr))
 {
 sptr++;
 pptr++;

 /* if end of pattern then pattern was found */
 if ('\0' == *pptr)
 return (start);
 }
 }
 return(0);
}

* Other brands and names are the property of their respective owners.

* Legal Information © 1998 Intel Corporation

13 of 13 1/7/98 4:00 PM

Optimized String Search with MMX™ Technology http://proto-cps.jf.intel.com/drg/pentiumII/appnotes/string.htm

